User Tools

Site Tools


neuroimagen:tau101

Notas para Pet-Tau

Plan

  1. Registro a native space
  2. SUVR no PVC: 2 refROIs (inferior CerebWM, eroded hemispheric WM)

Teoria

Revision: https://pubs.rsna.org/doi/10.1148/radiol.2020200028

Unidades de tau: (https://jamanetwork.com/journals/jamaneurology/article-abstract/2604134) standardized uptake value ratio (SUVR) using the cerebellar gray matter ROI as a reference

ROIs para tau: https://www.nature.com/articles/mp2017108 Regions of interest For regional quantification, we used regions of interest (ROIs) derived from a probabilistic atlas,24 spatially warped in each patient’s native T1-MRI space, after application of an individual grey matter mask, as previously described.12 Our choice of ROIs was based on previously published cross-sectional data on tau PET imaging—12,25 parahippocampal gyrus, fusiform gyrus, middle and inferior temporal gyrus, posterior cingulate cortex and orbitofrontal cortex for patients with AD, and putamen for patients with CBS. A composite isocortical ROI was created for quantifying [11C]PIB retention.

Mas info:

ROIs were based on the parcellation of the T1-weighted MRI using FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/). Standardized uptake value ratio (SUVR) images were calculated using an inferior cerebellar reference region [37]. For comparison, SUVR images were also created using the whole cerebellum and an eroded white matter reference region. Partial volume correction (PVC) was performed using the geometric transfer matrix method [38]; both corrected and uncorrected data were analyzed. Composite ROIs were created for regions corresponding to image-based tau stages, as defined in [39]—I/II (entorhinal), III/IV (temporal/limbic), V/VI (neocortical), and I–IV (temporal meta-ROI)—and the basal ganglia (caudate nucleus, putamen, and globus pallidus).

The cerebellar cortex was used as a reference region to create standardized uptake value ratio (SUVR) images. Finally, we measured PVE-uncorrected and corrected regional SUVR values for 25 cortical regions (inferior, middle and superior frontal, orbitofrontal, paracentral, precentral, inferior and superior parietal, postcentral, precuneus, supramarginal, medial and lateral occipital, lingual, insula, inferior, middle and superior temporal, fusiform, parahippocampal, anterior and posterior cingulate cortices, amygdala, and hippocampus).

A surface-based SUVR map was created with the cerebellar cortex SUVs obtained by volume-based approach and spatially normalized to the average surface. The spatially normalized surface-based SUVR maps were then convoluted by Gaussian kernel with 8 mm full-width half maximum (FWHM) to reduce noise

Tau accumulation was most frequently observed in the medial temporal regions and stepwise spread to the basal and lateral temporal, inferior parietal, posterior cingulate, and the other association cortices, and then ultimately to the primary cortical regions. In contrast, amyloid accumulation was found with similar frequency in the diffuse neocortical areas and then finally spread to the medial temporal regions. The image-based tau stage correlated with the general cognitive status, while cortical thinning was found only in the advanced tau stages; medial temporal region in stage V and widespread cortex in stage VI.

The cortex was parcellated using FreeSurfer [29, 30] on all subject MR data. Binary masks of volumes of interest (VOIs) were generated using the FreeSurfer parcellations on a per-subject basis. The parcellations were combined into 14 larger anatomical regions. These included ten GM volumes and four other regions. A background mask was also generated by inverting the summation of the 14 VOI masks. The GM volumes consisted of frontal, central, parietal, temporal, occipital, cingulate, insula, subcortical GM (caudate, putamen, thalamus, amygdala, pallidum), hippocampi and cerebellum. The other VOIs were subcortical WM, cerebellar WM, brain stem and ventricular and CSF space. The regions were selected in order to firstly separate the tissue types and then to divide the tissues into clinically relevant regions (e.g. frontal, parietal and temporal) and those that could suffer from severe PVEs (e.g. the occipital lobe and cingulate). A central lobule (pre-, para- and postcentral gyrus) was created as this region is thought to be relatively spared in AD [31] and is surrounded by ‘hotter’ GM regions.

The PET scans (both PV-corrected and uncorrected) were normalized by the mean cerebellar GM uptake value, found using the cerebellar GM mask. These normalized images are the SUVR images.

Care should be taken when applying PVC to amyloid PET images. Assumptions made in existing PVC strategies can induce biases that could lead to erroneous inferences about uptake in certain regions. The proposed RBV PVC technique accounts for within-compartment variability, with the potential to reduce errors of this kind.

PETPVC

Notes on input and output files

The applications in this toolbox use ITK image readers and writers and can therefore accept common medical imaging formats such as Nifti, ANALYZE and Nrrd, and raw data with an associated meta-data header (mhd) file.

The tissue classification maps (referred to as mask files) can either be binary or probabilistic. All voxel values in a 3-D volume must be 0 ⇐ x ⇐ 1. The PVC applications expect the mask file to be input as a single 4-D volume, where each 3-D volume consists of a single segmented region.

The use of 4-D volumes facilitates the use of probabilistic segmentations during the PVC. In addition to the constraint that all voxels must be ⇐ 1, The sum of a voxel location across the fourth dimension should be ⇐ 1. Ideally it should be 1, which requires the background to be included as a segmented region.

Special cases where the inputs/outputs are different

Muller-Gartner (MG): The Muller-Gartner correction requires only the grey matter and white matter masks. Technically, the CSF space should be included as a third region, but the contribution of this region is assumed to be zero. The MG application still requires a 4-D mask volume, where the first volume is grey matter and the second is white matter. The order is important. The 4-D mask file can contain more than two 3-D volumes, but these will be ignored by the MG PVC.

Geometric Transfer Matrix (GTM) method: GTM cannot produce an image. The output of the GTM is a comma-separated value (CSV) file of regional mean values. The order of the mean values for each region is written in the same order as they appear in the fourth dimension of the mask file.

Single Target Correction (STC) method: The STC method corrects a single region. The mask image should be a 3-D volume, where each voxel in the target region should be 1. All other voxels should be 0.

Prueba PETPVC

[osotolongo@brick03 rois]$ fslmerge -t braak_4d braak_1 braak_2 braak_12 braak_3 braak_4 braak_34
[osotolongo@brick03 test]$ petpvc -i tau01_mean.nii.gz -m rois/braak_4d.nii.gz -o tau_pvc_test.csv -p GTM -x 6.0 -y 6.0 -z 6.0
Performing Geometric matrix method...
330.082 -0.537796 329.544 130.753 229.274 360.027

Ver explicacion de porque la ROI 2 es una mierda (braak_2)

Notas sueltas para metricas

label del Left-Hippocampus:

[osotolongo@brick03 ~]$ mri_vol2label --c /nas/data/subjects/f5cehbi_0001/mri/aseg.mgz --id 17 --l $SUBJECTS_DIR/f5cehbi_0001/labels/17.label

Los corticales hay que añadirlos a esto:

[osotolongo@brick03 neuro.dev]$ cat bin/prepare_fs_labels.sh 
#!/bin/sh
subject=$1
shift
 
tmp_dir=$1
shift
 
mri_annotation2label --subject ${subject} --hemi lh --outdir $SUBJECTS_DIR/${subject}/labels
tkregister2 --mov $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --noedit --s ${subject} --regheader --reg ${tmp_dir}/lh.register.dat
mri_annotation2label --subject ${subject} --hemi rh --outdir $SUBJECTS_DIR/${subject}/labels
tkregister2 --mov $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --noedit --s ${subject} --regheader --reg ${tmp_dir}/rh.register.dat

Registro

Me bajo de ADNI un T1w y un PET-tau para probar,

Voy a intentar registrar el tau a espacio nativo,

No lineal + Correccion de movimiento

La imagen tau tiene 6 slices,

[osotolongo@brick03 test]$ fslsplit tau01_tau.nii.gz tau01_piece_ -t
[osotolongo@brick03 test]$ for x in tau01_piece_*; do
> ${ANTS_PATH}/antsRegistrationSyNQuick.sh -d 3 -f tau01_struc.nii.gz -m ${x} -t s -o ${x%.nii.gz}_movingToFixed_
> ${ANTS_PATH}/antsApplyTransforms -d 3 -r tau01_struc.nii.gz -i ${x} -t ${x%.nii.gz}_movingToFixed_0GenericAffine.mat -t ${x%.nii.gz}_movingToFixed_1Warp.nii.gz -o ${x%.nii.gz}_reg.nii.gz
> done
[osotolongo@brick03 test]$ a=`for i in *_reg.nii.gz; do echo " $i"; done`
[osotolongo@brick03 test]$ fslmerge -t tau01_corr.nii.gz $a
[osotolongo@brick03 test]$ fslmaths tau01_corr.nii.gz -Tmean tau01_mean.nii.gz

supuestamente despues solo tendria que hacer esto,

[osotolongo@brick03 test]$ ${ANTS_PATH}/antsRegistrationSyNQuick.sh -d 3 -f tau01_struc.nii.gz -m tau01_mean.nii.gz -t s -o tau01_movingToFixed_
[osotolongo@brick03 test]$ ${ANTS_PATH}/antsApplyTransforms -d 3 -r tau01_struc.nii.gz -i tau01_mean.nii.gz -t tau01_movingToFixed_0GenericAffine.mat -t tau01_movingToFixed_1Warp.nii.gz -o tau01_2ns.nii.gz

Normalmente es muy error prone. Urge hacer comparacion entre correccion por movimiento y simple media temporal. EL sujeto del ejemplo esta mal registrado.

No lineal + raw mean

Si excluyo la correccion de movimiento queda mejor. Hago solo,

[osotolongo@brick03 test]$ fslmaths tau01_tau.nii.gz -Tmean tau01_mean.nii.gz
[osotolongo@brick03 test]$ ${ANTS_PATH}/antsRegistrationSyNQuick.sh -d 3 -f tau01_struc.nii.gz -m tau01_mean.nii.gz -t s -o tau01_movingToFixed_
[osotolongo@brick03 test]$ ${ANTS_PATH}/antsApplyTransforms -d 3 -r tau01_struc.nii.gz -i tau01_mean.nii.gz -t tau01_movingToFixed_0GenericAffine.mat -t tau01_movingToFixed_1Warp.nii.gz -o tau01_2ns.nii.gz

correcion de movimiento + mean

[osotolongo@brick03 test]$ ${FREESURFER_HOME}/bin/mri_convert --in_type mgz --out_type nii ${SUBJECTS_DIR}/tau01/mri/rawavg.mgz tau01_struc.nii.gz
[osotolongo@brick03 test]$ for x in tau01_piece_*; do ${ANTS_PATH}/antsRegistrationSyNQuick.sh -d 3 -f tau01_struc.nii.gz -m ${x} -t a -o ${x%.nii.gz}_movingToFixed_; ${ANTS_PATH}/antsApplyTransforms -d 3 -r tau01_struc.nii.gz -i ${x} -t ${x%.nii.gz}_movingToFixed_0GenericAffine.mat -o ${x%.nii.gz}_reg.nii.gz; done
[osotolongo@brick03 test]$ a=`for i in *_reg.nii.gz; do echo " $i"; done`
[osotolongo@brick03 test]$ fslmerge -t tau01_corr.nii.gz $a
[osotolongo@brick03 test]$ fslmaths tau01_corr.nii.gz -Tmean tau01_mean.nii.gz

Mascaras

get_troi.sh
#!/bin/sh
subject=$1
shift
 
tmp_dir=$1
shift
 
roi=$1
shift
 
if [ ! -f ${tmp_dir}/rois/register.dat ]; then
        mkdir ${tmp_dir}/rois/;
        tkregister2 --mov $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --noedit --s ${subject} --regheader --reg ${tmp_dir}/rois/register.dat;
fi
mri_label2vol --seg $SUBJECTS_DIR/${subject}/mri/aparc+aseg.mgz --temp $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --o ${tmp_dir}/all_aseg.nii.gz --reg ${tmp_dir}/rois/register.dat
mkdir ${tmp_dir}/rois/${roi};
for x in `cat ${PIPEDIR}/lib/tau/${roi}.roi`; do
        rlabel=$(echo ${x} | awk -F"," '{print $1}');
        nlabel=$(echo ${x} | awk -F"," '{print $2}');
        ${FSLDIR}/bin/fslmaths ${tmp_dir}/all_aseg.nii.gz -uthr ${rlabel} -thr ${rlabel} -div ${rlabel} ${tmp_dir}/rois/${roi}/${nlabel}
done
a=$(for x in ${tmp_dir}/rois/${roi}/*.nii.gz; do echo "${x} -add "; done)
a=$(echo ${a} | sed 's/\(.*\)-add$/\1/')
#echo ${a}
${FSLDIR}/bin/fslmaths ${a} ${tmp_dir}/rois/${roi}

probando una ROI,

[osotolongo@brick03 tau]$ cat meta_temporal.roi
18,L_amygdala
1006,L_entorhinal
1007,L_fusiform
1009,L_inferiortemporal
1015,L_middletemporal
54,R_amygdala
2006,R_entorhinal
2007,R_fusiform
2009,R_inferiortemporal
2015,R_middletemporal
[osotolongo@brick03 tau]$ get_troi.sh tau01 /old_nas/tau/tmp meta_temporal

Esto al menos, funciona bien

normalizacion

Problema : No puedo usar nu.mgz y rawavg.nii.gz en el mismo procesamiento. He de decidir por uno. En este caso funciona mucho mejor si registro el sujeto de FS usando rawavg.mgz. .

Hay dos opciones de normalizacion,

  1. Eroded hemisferic WM
  2. Cerebellum inferior GM

La primera es mas facil,

get_tref_ewm.sh
#!/bin/sh
subject=$1
shift
 
tmp_dir=$1
shift
 
roi=scwm.ref
 
if [ ! -f ${tmp_dir}/rois/register.dat ]; then
        mkdir ${tmp_dir}/rois/;
        tkregister2 --mov $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --noedit --s ${subject} --regheader --reg ${tmp_dir}/rois/register.dat;
fi
if [ ! -f ${tmp_dir}/all_aseg.nii.gz ]; then
        mri_label2vol --seg $SUBJECTS_DIR/${subject}/mri/aparc+aseg.mgz --temp $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --o ${tmp_dir}/all_aseg.nii.gz --reg ${tmp_dir}/rois/register.dat;
fi
mkdir ${tmp_dir}/rois/${roi%.ref};
for x in `cat ${PIPEDIR}/lib/tau/${roi}`; do
        rlabel=$(echo ${x} | awk -F"," '{print $1}');
        nlabel=$(echo ${x} | awk -F"," '{print $2}');
        ${FSLDIR}/bin/fslmaths ${tmp_dir}/all_aseg.nii.gz -uthr ${rlabel} -thr ${rlabel} -div ${rlabel} ${tmp_dir}/rois/${roi%.ref}/${nlabel}
done
a=$(for x in ${tmp_dir}/rois/${roi%.ref}/*.nii.gz; do echo "${x} -add "; done)
a=$(echo ${a} | sed 's/\(.*\)-add$/\1/')
${FSLDIR}/bin/fslmaths ${a} -kernel gauss 3.3973 -fmean -thr 0.7 ${tmp_dir}/rois/${roii%.ref}

La segunda implica tomar la GM del cerebelo de FS, y con una mascara de la parte inferior, hecha con SUIT tomar solo esa parte.

Nota: Hay un template de SUIT en espacio MNI proporcionado por AFNI (http://afni.nimh.nih.gov/pub/dist/atlases/SUIT_Cerebellum//SUIT_2.6_1/AFNI_SUITCerebellum.tgz). Ver https://afni.nimh.nih.gov/afni/community/board/read.php?1,142026,142026

Cerebellum-MNIsegment.nii.gz

Asi, que debo llevar este template a espacio nativo.

[osotolongo@brick03 test]$ ${ANTSPATH}/antsRegistrationSyNQuick.sh -d 3 -f /usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz -m tau01_struc.nii.gz -o structToMNI_ -t s
[osotolongo@brick03 test]$ ${ANTSPATH}/antsApplyTransforms -d 3 -i /nas/software/neuro.dev/lib/tau/Cerebellum-MNIsegment.nii.gz -r tau01_struc.nii.gz -t [structToMNI_0GenericAffine.mat, 1] -t structToMNI_1InverseWarp.nii.gz -n GenericLabel -o CerebinNS.nii.gz

De aqui tengo que escoger las regiones inferiores. (Zonas 6,8-28,33,34)

#Ahora sacar el mapa de cerebelo de SUIT
${FREESURFER_HOME}/bin/mri_convert --in_type mgz --out_type nii ${SUBJECTS_DIR}/${subject}/mri/rawavg.mgz ${tmp_dir}/${subject}_tmp.nii.gz
${FSLDIR}/bin/fslreorient2std ${tmp_dir}/${subject}_tmp ${tmp_dir}/${subject}_struc
${ANTSPATH}/antsRegistrationSyNQuick.sh -d 3 -f ${FSLDIR}/data/standard/MNI152_T1_1mm.nii.gz -m ${tmp_dir}/${subject}_struc.nii.gz -o ${tmp_dir}/structToMNI_ -t s
${ANTSPATH}/antsApplyTransforms -d 3 -i ${PIPEDIR}/lib/tau/Cerebellum-MNIsegment.nii.gz -r ${tmp_dir}/${subject}_struc.nii.gz -t [${tmp_dir}/structToMNI_0GenericAffine.mat, 1] -t ${tmp_dir}/structToMNI_1InverseWarp.nii.gz -n GenericLabel -o ${tmp_dir}/CerebinNS.nii.gz
#Dejar solo a parte de abajo?
mkdir ${tmp_dir}/incsuit
for x in `cat ${PIPEDIR}/lib/tau/incsuit.ref`; do
        ${FSLDIR}/bin/fslmaths ${tmp_dir}/CerebinNS.nii.gz -uthr ${x} -thr  ${x} -div ${x} ${tmp_dir}/incsuit/${x};
done
a=$(for x in ${tmp_dir}/incsuit/*.nii.gz; do echo "${x} -add "; done)
a=$(echo ${a} | sed 's/\(.*\)-add$/\1/')
${FSLDIR}/bin/fslmaths ${a} ${tmp_dir}/incsuit.nii.gz

y aplicar esta mascara en el Cerebelo de FS,

${FSLDIR}/bin/fslmaths ${tmp_dir}/rois/${roii%.ref} -mas ${tmp_dir}/incsuit.nii.gz ${tmp_dir}/inferior_cereb.nii.gz

entendiendo las metricas

Meta-temporal ROI [8]
18 L_amygdala
1006 L_entorhinal
1007 L_fusiform
1009 L_inferiortemporal
1015 L_middletemporal
54 R_amygdala
2006 R_entorhinal
2007 R_fusiform
2009 R_inferiortemporal
2015 R_middletemporal 

[8] Jack CR Jr , Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer's disease. Alzheimers & Dementia. 2017; 13: 205–16.

si hago algo como,

[osotolongo@brick03 test]$ tkregister2 --mov /nas/data/subjects/tau01/mri/rawavg.mgz --noedit --s tau01 --regheader --reg rois/register.dat
[osotolongo@brick03 test]$ mri_label2vol --seg /nas/data/subjects/tau01/mri/aparc+aseg.mgz --temp /nas/data/subjects/tau01/mri/rawavg.mgz --o rois/all_aseg.nii.gz --reg rois/register.dat 

solo tendria que hacer una mascara para cada zona y sumar las mascaras luego.

get_troi.sh
#!/bin/sh
subject=$1
shift
 
tmp_dir=$1
shift
 
roi=$1
shift
 
if [ ! -f ${tmp_dir}/rois/register.dat ]; then 
	mkdir ${tmp_dir}/rois/;
	tkregister2 --mov $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --noedit --s ${subject} --regheader --reg ${tmp_dir}/rois/register.dat;
fi
if [ ! -f ${tmp_dir}/all_aseg.nii.gz ]; then
	mri_label2vol --seg $SUBJECTS_DIR/${subject}/mri/aparc+aseg.mgz --temp $SUBJECTS_DIR/${subject}/mri/rawavg.mgz --o ${tmp_dir}/all_aseg.nii.gz --reg ${tmp_dir}/rois/register.dat;
fi
mkdir ${tmp_dir}/rois/${roi};
for x in `cat ${PIPEDIR}/lib/tau/${roi}.roi`; do 
	rlabel=$(echo ${x} | awk -F"," '{print $1}');
	nlabel=$(echo ${x} | awk -F"," '{print $2}');
	${FSLDIR}/bin/fslmaths ${tmp_dir}/all_aseg.nii.gz -uthr ${rlabel} -thr ${rlabel} -div ${rlabel} ${tmp_dir}/rois/${roi}/${nlabel}
done
a=$(for x in ${tmp_dir}/rois/${roi}/*.nii.gz; do echo "${x} -add "; done) 
a=$(echo ${a} | sed 's/\(.*\)-add$/\1/')
#echo ${a}
${FSLDIR}/bin/fslmaths ${a} ${tmp_dir}/rois/${roi} 

esto lo ejecuto como,

[osotolongo@brick03 test]$ get_troi.sh tau01 /old_nas/tau/tmp braak_34

y me da la mascara correspondiente braak 34

TO DO

  1. Definir VOI en FS (subcort ROIs + cort ROIs) :FINISHED:
  2. bulk processing (BIDS, Registro, Metricas)
    1. DCM a BIDs para PET-tau (debe variar para cada estudio) :FINISHED:
    2. Registro (con correccion de movimiento) :FINISHED:
    3. Metricas calcular VOI y aplicar, normalizar por cerebellum GM o eroded WM :WIP:
  3. bajar imagenes de ADNI (PET-tau ↔ T1w)
  4. evaluar importancia de la correccion de movimiento :QUESTION:

Building blocks

ADNI

[osotolongo@brick03 ADNI]$ for x in *; do f=$(find ${x}/ADNI_Brain_PET__Raw_Tau/ -type f | grep -v xml | head -n 1); sd=$(dckey -k "SeriesDescription" ${f} 2>&1); echo "${x} -> ${sd}"; done
002_S_6007 -> ADNI Brain PET: Raw 
002_S_6009 -> ADNI Brain PET: Raw 
002_S_6030 -> ADNI Brain PET: Raw 
002_S_6053 -> ADNI Brain PET: Raw 
002_S_6103 -> ADNI Brain PET: Raw 
002_S_6695 -> ADNI Brain PET: Raw 
 
[osotolongo@brick03 ADNI]$ for x in *; do f=$(find ${x}/Accelerated_Sagittal_MPRAGE/ -type f | grep -v xml | head -n 1); sd=$(dckey -k "SeriesDescription" ${f} 2>&1); echo "${x} -> ${sd}"; done
002_S_6007 -> Accelerated Sagittal MPRAGE 
002_S_6009 -> Accelerated Sagittal MPRAGE 
002_S_6030 -> Accelerated Sagittal MPRAGE 
002_S_6053 -> Accelerated Sagittal MPRAGE 
002_S_6103 -> Accelerated Sagittal MPRAGE 
002_S_6695 -> Accelerated Sagittal MPRAGE 

Test project

[osotolongo@brick03 bin]$ make_proj.pl atau /old_nas/tau/ADNI
[osotolongo@brick03 bin]$ tree /nas/data/atau
/nas/data/atau
├── bids
└── working
 
2 directories, 0 files
 
[osotolongo@brick03 bin]$ cd /nas/data/atau/bids/
[osotolongo@brick03 bids]$ dcm2bids_scaffold 
[osotolongo@brick03 bids]$ dcm2bids_helper -d /old_nas/tau/ADNI/002_S_6007/
Example in:
/old_nas/atau/bids/tmp_dcm2bids/helper

conversion,

conversion.json
{
        "descriptions": [
                {
                        "dataType": "anat",
                        "modalityLabel": "T1w",
                        "criteria": {
                                "SeriesDescription": "Accelerated_Sagittal_MPRAGE"
                        }
                },
                {
                        "dataType": "pet",
                        "modalityLabel": "tau",
                        "criteria": {
                                "SeriesDescription": "ADNI_Brain_PET:_Raw"
                        }
                }
        ]
}
[osotolongo@brick03 bids]$ bulk2bids.pl atau
Submitted batch job 19443
Submitted batch job 19444
Submitted batch job 19445
Submitted batch job 19446
Submitted batch job 19447
Submitted batch job 19448
Submitted batch job 19449
[osotolongo@brick03 atau]$ tree bids/sub-0001/
bids/sub-0001/
├── anat
│   ├── sub-0001_T1w.json
│   └── sub-0001_T1w.nii.gz
└── pet
    ├── sub-0001_tau.json
    └── sub-0001_tau.nii.gz
 
2 directories, 4 files
[osotolongo@brick03 atau]$ precon.pl atau
Submitted batch job 19464
Submitted batch job 19465
Submitted batch job 19466
Submitted batch job 19467
Submitted batch job 19468
Submitted batch job 19469
Submitted batch job 19470

Registro

tau_reg.sh
#!/bin/sh
 
study=$1
shift
id=$1
shift
wdir=$1
shift
src=$1
shift
 
td=${wdir}'/.tmp_pet_'${id}
if [ ! -d "$td" ]; then
        mkdir $td
fi
debug=1
${FREESURFER_HOME}/bin/mri_convert --in_type mgz --out_type nii ${SUBJECTS_DIR}/${study}_${id}/mri/rawavg.mgz ${td}/${id}_struc.nii.gz
${FSLDIR}/bin/fslsplit ${src} ${td}/${id}_piece_ -t
for x in ${td}/${id}_piece_*; do
        ${ANTS_PATH}/antsRegistrationSyNQuick.sh -d 3 -f ${td}/${id}_struc.nii.gz -m ${x} -t a -o ${x%.nii.gz}_movingToFixed_;
        ${ANTS_PATH}/antsApplyTransforms -d 3 -r ${td}/${id}_struc.nii.gz -i ${x} -t ${x%.nii.gz}_movingToFixed_0GenericAffine.mat -o ${x%.nii.gz}_reg.nii.gz;
done
a=`for i in ${td}/*_reg.nii.gz; do echo " $i"; done`
${FSLDIR}/bin/fslmerge -t ${td}/${id}_corr.nii.gz $a
${FSLDIR}/bin/fslmaths ${td}/${id}_corr.nii.gz -Tmean ${td}/${id}_mean.nii.gz
if [ $debug = 0 ] ; then
    rm -rf ${td}
fi
 

Tau Report

make_tau_report.pl
#!/usr/bin/perl
 
# Copyright 2021 O. Sotolongo <asqwerty@gmail.com>
 
use strict; use warnings;
use File::Slurp qw(read_file);
use File::Find::Rule;
use File::Basename qw(basename);
use Data::Dump qw(dump);
use File::Copy::Recursive qw(dirmove);
 
use NEURO4 qw(load_project print_help);
my $full = 0;
@ARGV = ("-h") unless @ARGV;
while (@ARGV and $ARGV[0] =~ /^-/) {
    $_ = shift;
    last if /^--$/;
    if (/^-f/) {$full = 1}
    if (/^-h/) { print_help $ENV{'PIPEDIR'}.'/doc/make_fbb_report.hlp'; exit;}
}
my $study = shift;
unless ($study) { print_help $ENV{'PIPEDIR'}.'/doc/make_pet_report.hlp'; exit;}
 
my %std = load_project($study);
 
my $w_dir=$std{'WORKING'};
my $d_dir=$std{'DATA'};
 
# Redirect ouput to logfile (do it only when everything is fine)
my $debug = "$d_dir/.debug_report.log";
open STDOUT, ">$debug" or die "Can't redirect stdout";
open STDERR, ">&STDOUT" or die "Can't dup stdout";
 
my $order = "slicesdir -o ";
my @names = find(file => 'name' => "*_tau.nii.gz", in => $w_dir);
foreach my $name (sort @names){
        (my $struc = $name) =~ s/tau/struc/;
        $order .= $name.' '.$struc." ";
        if ($full) {
                (my $base = $name) =~ s/\.nii\.gz$//;
                $base=basename($base);
                my @regs = find(file => 'name' => "$base*reg.nii.gz", in => $w_dir);
                dump @regs;
                foreach my $reg (sort @regs){
                        $order .= $reg.' '.$struc." ";
                }
        }
}
chdir $w_dir;
print "$order\n";
system($order);
dirmove('slicesdir', 'taus');

Tau preproc

tau_proc.pl
#!/usr/bin/perl
 
# Copyright 2021 O. Sotolongo <asqwerty@gmail.com>
 
use strict; use warnings;
use Data::Dump qw(dump);
use File::Find::Rule;
use File::Copy::Recursive qw(dirmove);
 
use NEURO4 qw(check_pet check_subj load_project print_help check_or_make cut_shit);
 
my $cfile="";
my $time = '8:0:0';
 
@ARGV = ("-h") unless @ARGV;
while (@ARGV and $ARGV[0] =~ /^-/) {
    $_ = shift;
    last if /^--$/;
    if (/^-cut/) { $cfile = shift; chomp($cfile);}
    if (/^-time/) {$time = shift; chomp($time)}
    if (/^-h/) { print_help $ENV{'PIPEDIR'}.'/doc/tau_reg.hlp'; exit;}
}
my $study = shift;
unless ($study) { print_help $ENV{'PIPEDIR'}.'/doc/tau_reg.hlp'; exit;}
my %std = load_project($study);
 
my $subj_dir = $ENV{'SUBJECTS_DIR'};
 
my $w_dir=$std{'WORKING'};
my $db = $std{'DATA'}.'/'.$study.'_pet.csv';
my $data_dir=$std{'DATA'};
my $outdir = "$std{'DATA'}/slurm";
check_or_make($outdir);
 
print "Collecting needed files\n";
my @pets = cut_shit($db, $data_dir.'/'.$cfile);
 
foreach my $subject (@pets){
        my %spet = check_pet($std{'DATA'},$subject);
        my %smri = check_subj($std{'DATA'},$subject);
        if($spet{'tau'} && $smri{'T1w'}){
                my $order = $ENV{'PIPEDIR'}."/bin/tau_reg.sh ".$study." ".$subject." ".$w_dir." ".$spet{'tau'};
                my $orderfile = $outdir.'/'.$subject.'_tau_reg.sh';
                open ORD, ">$orderfile";
                print ORD '#!/bin/bash'."\n";
                print ORD '#SBATCH -J tau_reg_'.$study."\n";
                print ORD '#SBATCH --time='.$time."\n"; #si no ha terminado en X horas matalo
                print ORD '#SBATCH --mail-type=FAIL,STAGE_OUT'."\n"; #no quieres que te mande email de todo
                print ORD '#SBATCH -o '.$outdir.'/tau_reg_'.$subject.'-%j'."\n";
                print ORD '#SBATCH -c 4'."\n";
                print ORD '#SBATCH --mem-per-cpu=4G'."\n";
                print ORD '#SBATCH --mail-user='."$ENV{'USER'}\n";
                print ORD "srun $order\n";
                close ORD;
                system("sbatch $orderfile");
        }
}
my $order = $ENV{'PIPEDIR'}."/bin/make_tau_report.pl ".$study;
my $orderfile = $outdir.'/tau_report.sh';
open ORD, ">$orderfile";
print ORD '#!/bin/bash'."\n";
print ORD '#SBATCH -J tau_reg_'.$study."\n";
print ORD '#SBATCH --time=2:0:0'."\n"; #si no ha terminado en X horas matalo
print ORD '#SBATCH --mail-type=FAIL,END'."\n"; #email cuando termine o falle
print ORD '#SBATCH --mail-user='."$ENV{'USER'}\n";
print ORD '#SBATCH -o '.$outdir.'/tau_report-%j'."\n";
print ORD "srun $order\n";
close ORD;
 
my $xorder = 'sbatch --dependency=singleton'.' '.$orderfile;
exec($xorder);
[osotolongo@brick03 atau]$ tau_proc.pl atau
Collecting needed files
Submitted batch job 19478
Submitted batch job 19479
Submitted batch job 19480
Submitted batch job 19481
Submitted batch job 19482
Submitted batch job 19483
Submitted batch job 19484
[osotolongo@brick03 atau]$ squeue
             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON) 
             19484      fast tau_reg_ osotolon PD       0:00      1 (Dependency) 
             19478      fast tau_reg_ osotolon  R       0:02      1 brick01 
             19479      fast tau_reg_ osotolon  R       0:02      1 brick01 
             19480      fast tau_reg_ osotolon  R       0:02      1 brick01 
             19481      fast tau_reg_ osotolon  R       0:02      1 brick01 
             19482      fast tau_reg_ osotolon  R       0:02      1 brick01 
             19483      fast tau_reg_ osotolon  R       0:02      1 brick01 

neuroimagen/tau101.txt · Last modified: 2021/02/16 15:54 by osotolongo