neuroimagen:bioface_atn
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revision | Next revisionBoth sides next revision | ||
neuroimagen:bioface_atn [2021/09/12 10:23] – [Métodos no lineales] osotolongo | neuroimagen:bioface_atn [2022/06/09 09:40] – [Métodos no lineales] osotolongo | ||
---|---|---|---|
Line 298: | Line 298: | ||
{{ : | {{ : | ||
+ | |||
+ | ===== Introduciendo WMH en AT(N)===== | ||
+ | |||
+ | ¿Son las afecciones vasculares parte de la neurodegeneracion? | ||
+ | |||
+ | Pues si queremos hacerlo de esta manera, hay basicamente dos maneras. Utilizando las WMH de Freesurfer (T1w) o las calculadas por un soft independiente (T2w). Si tenemos un FLAIR 3D podemos hacerlo de ambas maneras pero en caso contrario. | ||
+ | |||
+ | ==== evaluando FS WMH ==== | ||
+ | |||
+ | Las WMH vienen ya calculadas en el procedimiento // | ||
+ | |||
+ | <code RMarkdown> | ||
+ | ucsffsx -> ucsffsx_t | ||
+ | ucsffsx_t$VISCODE <- ifelse(ucsffsx_t$VISCODE == " | ||
+ | a1 <- merge(pop, ucsffsx_t, by=c(" | ||
+ | </ | ||
+ | |||
+ | y esto hay que hacerlo para cada una de las tablas y despues concatenar los resutados. Despues se incluye el WMH en el analisis y ya esta. | ||
+ | |||
+ | ++++ que se dice un poco mas rapido de lo que se hace, tambien es cierto, | | ||
+ | |||
+ | <code Rmarkdown> | ||
+ | library(" | ||
+ | library(" | ||
+ | library(" | ||
+ | library(" | ||
+ | library(" | ||
+ | |||
+ | input_file=" | ||
+ | output_file=" | ||
+ | output_fig=" | ||
+ | pop <- adnimerge[(adnimerge$DX==" | ||
+ | pop$ND = as.factor(ifelse(pop$DX == " | ||
+ | ucsffsx -> ucsffsx_t | ||
+ | ucsffsx_t$VISCODE <- ifelse(ucsffsx_t$VISCODE == " | ||
+ | a1 <- merge(pop, ucsffsx_t, by=c(" | ||
+ | ucsffsx51 -> ucsffsx_t | ||
+ | ucsffsx_t$VISCODE <- ifelse(ucsffsx_t$VISCODE == " | ||
+ | a2 <- merge(pop, ucsffsx_t, by=c(" | ||
+ | ucsffsx6 -> ucsffsx_t | ||
+ | ucsffsx_t$VISCODE <- ifelse(ucsffsx_t$VISCODE == " | ||
+ | a3 <- merge(pop, ucsffsx_t, by=c(" | ||
+ | a1t <- a1[, c(" | ||
+ | a2t <- a2[, c(" | ||
+ | a3t <- a3[, c(" | ||
+ | axt <- rbind(a1t, a2t, a3t) | ||
+ | xt <- rename(axt, " | ||
+ | classifier_cl <- naiveBayes(ND ~ ., data = xt) | ||
+ | base <- read.csv(input_file) | ||
+ | base$Hippocampus = base$Left.Hippocampus + base$Right.Hippocampus | ||
+ | base$Entorhinal = base$lh.entorhinal.GrayVol + base$rh.entorhinal.GrayVol | ||
+ | base$Ventricles <- base$Left.Inf.Lat.Vent + base$Right.Inf.Lat.Vent + base$Left.Lateral.Ventricle + base$Right.Lateral.Ventricle | ||
+ | base$MidTemp = base$lh.middletemporal.GrayVol + base$rh.middletemporal.GrayVol | ||
+ | base$ICV = base$eTIV | ||
+ | base$WMH = base$WM.hypointensities | ||
+ | base$ND <- predict(classifier_cl, | ||
+ | base2e = base[, c(" | ||
+ | write.csv(base2e, | ||
+ | a <- lm(base$Hippocampus ~ base$ICV) | ||
+ | base$aHV = base$Hippocampus - a$coefficients[[2]]*(base$ICV - mean(base$ICV, | ||
+ | postscript(output_fig, | ||
+ | plot(base$AGE, | ||
+ | dev.off() | ||
+ | a <- lm(base$MidTemp ~ base$ICV) | ||
+ | base$aMidTemp = base$MidTemp - a$coefficients[[2]]*(base$ICV - mean(base$ICV, | ||
+ | output_fig=" | ||
+ | postscript(output_fig, | ||
+ | plot(base$AGE, | ||
+ | dev.off() | ||
+ | a <- lm(base$Entorhinal ~ base$ICV) | ||
+ | base$aEntorhinal = base$Entorhinal - a$coefficients[[2]]*(base$ICV - mean(base$ICV, | ||
+ | output_fig=" | ||
+ | postscript(output_fig, | ||
+ | plot(base$AGE, | ||
+ | dev.off() | ||
+ | </ | ||
+ | |||
+ | |||
+ | </ |
neuroimagen/bioface_atn.txt · Last modified: 2022/06/14 08:22 by osotolongo