This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
neuroimagen:altdti [2019/03/25 08:59] osotolongo [Todas las redes] |
neuroimagen:altdti [2020/08/04 10:58] (current) |
||
---|---|---|---|
Line 1724: | Line 1724: | ||
F-statistic: | F-statistic: | ||
</ | </ | ||
+ | |||
+ | |||
+ | ===== Riesgo - No riesgo ===== | ||
+ | |||
+ | Vamosaplantear el problema de manera distinta. Supongamos que la contribucion del APOE depende solo de la presencia del alelo $\epsilon$-4 y clasifiquemos los sujetos segun esto, en //con riesgo// o //sin riesgo//. | ||
+ | |||
+ | <code R> | ||
+ | > okdata$Risk <- ifelse (okdata$APOE==2 , 1, 0) | ||
+ | </ | ||
+ | |||
+ | Pero ahora voy a hacer una cosa un poco mas complicada, | ||
+ | |||
+ | <code R get_lms2.r> | ||
+ | library(QuantPsyc) | ||
+ | x< | ||
+ | Color=c(" | ||
+ | scan(" | ||
+ | scan(" | ||
+ | sink(file = " | ||
+ | |||
+ | for(i in 1: | ||
+ | for(j in 1: | ||
+ | y.data <- x[c(ni[j], np[i], " | ||
+ | y.data <- y.data[complete.cases(y.data), | ||
+ | a <- lm( paste (' | ||
+ | writeLines(paste(" | ||
+ | writeLines(paste(" | ||
+ | writeLines(paste(" | ||
+ | beta <- lm.beta(a) | ||
+ | for(k in 1: | ||
+ | writeLines(paste(names(beta[k]), | ||
+ | } | ||
+ | writeLines(paste(" | ||
+ | } | ||
+ | } | ||
+ | sink() | ||
+ | </ | ||
+ | |||
+ | Asi que pruebo con el global, | ||
+ | |||
+ | <code R> | ||
+ | > write.csv(okdata, | ||
+ | > source(" | ||
+ | </ | ||
+ | |||
+ | y luego, | ||
+ | |||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ ./ | ||
+ | Analizing facehbi_dti_np_models.txt ... | ||
+ | |||
+ | DMN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.312799089824939, | ||
+ | pv_DMN_FA = 0.476462254461098, | ||
+ | |||
+ | SN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.311504329049638, | ||
+ | pv_SN_FA = 0.551975051522526, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.311678871879767, | ||
+ | pv_FPCustom_FA = 0.151421806156447, | ||
+ | </ | ||
+ | |||
+ | puaf, a ver, | ||
+ | |||
+ | <code R> | ||
+ | > m <- lm(okdata$funcioExecutiva_velocprocess_IM ~ okdata$SUVR + okdata$Edad + okdata$Escolaridad + okdata$female + okdata$DMN_FA*okdata$Risk) | ||
+ | > summary(m) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata$funcioExecutiva_velocprocess_IM ~ okdata$SUVR + | ||
+ | okdata$Edad + okdata$Escolaridad + okdata$female + okdata$DMN_FA * | ||
+ | okdata$Risk) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -1.4094 -0.5672 -0.1264 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata$SUVR | ||
+ | okdata$Edad | ||
+ | okdata$Escolaridad | ||
+ | okdata$female | ||
+ | okdata$DMN_FA | ||
+ | okdata$Risk | ||
+ | okdata$DMN_FA: | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.8286 on 188 degrees of freedom | ||
+ | (4 observations deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | |||
+ | No, gracias. :-\ | ||