This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
neuroimagen:adni_cusp [2015/12/21 16:37] osotolongo [Notas para Composite Scores] |
neuroimagen:adni_cusp [2020/08/04 10:58] (current) |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== Using ADNI data for Cusp model fitting ====== | ====== Using ADNI data for Cusp model fitting ====== | ||
+ | [[neuroimagen: | ||
===== Simple way ===== | ===== Simple way ===== | ||
Line 563: | Line 563: | ||
++++ | ++++ | ||
+ | ++++ Malo para el FDG | | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -3.02185 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 3895.6 | ||
+ | Linear deviance: 2026.9 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 2475.7 | ||
+ | |||
+ | | ||
+ | Linear model 0.2880251 -3890.378 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 534.8, df = 6, p-value = 0 | ||
+ | |||
+ | Number of optimization iterations: 43 | ||
+ | </ | ||
+ | ++++ | ||
+ | |||
+ | ++++ Pesimo para el AV45 | | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -2.77918 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 1649.6 | ||
+ | Linear deviance: 1051.9 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 1403.4 | ||
+ | |||
+ | | ||
+ | Linear model 0.2448373 -1998.714 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 34.08, df = 6, p-value = 6.494e-06 | ||
+ | |||
+ | Number of optimization iterations: 68 | ||
+ | </ | ||
+ | ++++ | ||
+ | |||
+ | ++++ Pero bastante bueno para el PiB | | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -1.39747 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error z value Pr(> | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 297.20 | ||
+ | Linear deviance: 154.46 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 152.70 | ||
+ | |||
+ | | ||
+ | Linear model 0.2060384 -271.7741 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 72.71, df = 6, p-value = 1.135e-13 | ||
+ | |||
+ | Number of optimization iterations: 34 | ||
+ | </ | ||
+ | ++++ | ||