This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
neuroimagen:adni_cusp [2015/12/21 15:48] osotolongo [Notas para Composite Scores] |
neuroimagen:adni_cusp [2020/08/04 10:58] (current) |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== Using ADNI data for Cusp model fitting ====== | ====== Using ADNI data for Cusp model fitting ====== | ||
+ | [[neuroimagen: | ||
===== Simple way ===== | ===== Simple way ===== | ||
Line 352: | Line 352: | ||
Lo ideal seria hacer script con todos los composites posibles y mirarlo contra los biomarcadores disponibles en // | Lo ideal seria hacer script con todos los composites posibles y mirarlo contra los biomarcadores disponibles en // | ||
- | Hay varios biomarcadores en la tabla //adnimerge// que pueden estar relacionados con los composites neuropsicologicos. | + | ++++ Hay varios biomarcadores en la tabla adnimerge que pueden estar relacionados con los composites neuropsicologicos |
<code R> | <code R> | ||
Line 381: | Line 381: | ||
[93] " | [93] " | ||
</ | </ | ||
+ | ++++ | ||
El problema es que cada uno debe ser analizado de manera distinta. Las variables // | El problema es que cada uno debe ser analizado de manera distinta. Las variables // | ||
+ | |||
+ | < | ||
+ | library(" | ||
+ | library(cusp) | ||
+ | library(psych) #for composite scores | ||
+ | # Let's get the data | ||
+ | tmp_np <- merge(adas, neurobat, by=c(" | ||
+ | m <- merge(tmp_np, | ||
+ | rm(tmp_np) | ||
+ | # Select data | ||
+ | m$cAGE = m$AGE + m$Years | ||
+ | data <- data.frame(m$WholeBrain, | ||
+ | datac <- data[complete.cases(data), | ||
+ | #Z-scores and Composite Scores | ||
+ | datac$zavd = (datac$m.AVDEL30MIN - mean(datac$m.AVDEL30MIN))/ | ||
+ | datac$zdr = (mean(datac$m.Q4SCORE) - datac$m.Q4SCORE)/ | ||
+ | datac$zAge = (datac$m.cAGE - mean(datac$m.cAGE))/ | ||
+ | datac$zEduc = (datac$m.PTEDUCAT - mean(datac$m.PTEDUCAT))/ | ||
+ | gfam <- data.frame(datac$zavd, | ||
+ | famod <- fa(gfam, scores=" | ||
+ | datac$drcs <- famod$scores | ||
+ | # NI biomarker | ||
+ | datac$wb = datac$m.WholeBrain/ | ||
+ | datac$zwb = (datac$wb - mean(datac$wb))/ | ||
+ | #fit to Cusp model | ||
+ | fit <- cusp(y ~ drcs, alpha ~ zwb + zAge + m.PTGENDER + zEduc, beta ~ zwb +zAge + m.PTGENDER + zEduc, datac) | ||
+ | summary(fit) | ||
+ | </ | ||
+ | |||
+ | ++++ El resultado no es demasiado bueno para la materia gris | | ||
+ | |||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -3.03128 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 7603.1 | ||
+ | Linear deviance: 4650.8 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 5097.1 | ||
+ | |||
+ | | ||
+ | Linear model 0.1983602 -8324.282 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 893.6, df = 6, p-value = 0 | ||
+ | |||
+ | Number of optimization iterations: 52 | ||
+ | </ | ||
+ | ++++ | ||
+ | |||
+ | ++++ Un poco mejor (no mucho) para los Ventriculos | | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -1.96597 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error z value Pr(> | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 7186.9 | ||
+ | Linear deviance: 4853.0 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 4458.2 | ||
+ | |||
+ | | ||
+ | Linear model 0.1386990 -8315.823 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 712.8, df = 6, p-value = 0 | ||
+ | |||
+ | Number of optimization iterations: 40 | ||
+ | </ | ||
+ | ++++ | ||
+ | |||
+ | ++++ Para el hipocampo el lineal es tan bueno como el no lineal| | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | Min | ||
+ | -3.0590 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error z value Pr(> | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 6826.7 | ||
+ | Linear deviance: 3140.1 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 4303.2 | ||
+ | |||
+ | | ||
+ | Linear model 0.3836286 -6535.252 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 885, df = 6, p-value = 0 | ||
+ | |||
+ | Number of optimization iterations: 65 | ||
+ | </ | ||
+ | ++++ | ||
+ | |||
+ | ++++ Malo para el FDG | | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -3.02185 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 3895.6 | ||
+ | Linear deviance: 2026.9 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 2475.7 | ||
+ | |||
+ | | ||
+ | Linear model 0.2880251 -3890.378 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 534.8, df = 6, p-value = 0 | ||
+ | |||
+ | Number of optimization iterations: 43 | ||
+ | </ | ||
+ | ++++ | ||
+ | |||
+ | ++++ Pesimo para el AV45 | | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -2.77918 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 1649.6 | ||
+ | Linear deviance: 1051.9 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 1403.4 | ||
+ | |||
+ | | ||
+ | Linear model 0.2448373 -1998.714 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 34.08, df = 6, p-value = 6.494e-06 | ||
+ | |||
+ | Number of optimization iterations: 68 | ||
+ | </ | ||
+ | ++++ | ||
+ | |||
+ | ++++ Pero bastante bueno para el PiB | | ||
+ | < | ||
+ | > summary(fit) | ||
+ | |||
+ | Call: | ||
+ | cusp(formula = y ~ drcs, alpha = alpha ~ zwb + zAge + m.PTGENDER + | ||
+ | zEduc, beta = beta ~ zwb + zAge + m.PTGENDER + zEduc, data = datac) | ||
+ | |||
+ | Deviance Residuals: | ||
+ | | ||
+ | -1.39747 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error z value Pr(> | ||
+ | a[(Intercept)] | ||
+ | a[zwb] | ||
+ | a[zAge] | ||
+ | a[m.PTGENDERFemale] | ||
+ | a[zEduc] | ||
+ | b[(Intercept)] | ||
+ | b[zwb] | ||
+ | b[zAge] | ||
+ | b[m.PTGENDERFemale] | ||
+ | b[zEduc] | ||
+ | w[(Intercept)] | ||
+ | w[drcs] | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | |||
+ | Null deviance: 297.20 | ||
+ | Linear deviance: 154.46 | ||
+ | Logist deviance: | ||
+ | Delay deviance: 152.70 | ||
+ | |||
+ | | ||
+ | Linear model 0.2060384 -271.7741 | ||
+ | Cusp model | ||
+ | --- | ||
+ | Note: R.Squared for cusp model is Cobb's pseudo-R^2. This value | ||
+ | can become negative. | ||
+ | |||
+ | Chi-square test of linear vs. cusp model | ||
+ | |||
+ | X-squared = 72.71, df = 6, p-value = 1.135e-13 | ||
+ | |||
+ | Number of optimization iterations: 34 | ||
+ | </ | ||
+ | ++++ | ||
+ |