--- title: Prediccion a largo plazo de las variables de verbos output: html_document --- ```{r warning = FALSE} date() ``` Lo que hemos hecho es seleccionar algunas variables (NP) que indican la fluencia verbal y ver si hay algun cambio significativo en el diagnostico en la visita 5 ### Plots ```{r message = FALSE, warning = FALSE} library(ggplot2) fc <- read.csv("facehbi_response.csv") langs <- c("fe_verb_fluency_np", "kissing_dancing_images_fac", "kissing_dancing_words_fac", "action_naming_free_fac") for (lang in langs) { out_fig <- paste0("response_",lang, ".png") ggplot(fc, aes(x = syndromic_diagnosis, y = .data[[lang]], fill = syndromic_diagnosis)) + stat_boxplot(geom = "errorbar", width = 0.25) + geom_boxplot() -> p print(p) } ``` Ya que parece que hay diferencias significativas, vamos a ver que dice la estadistica, ### Stats ```{r message = FALSE, warning = FALSE} fc <- read.csv("facehbi_response.csv") langs <- c("fe_verb_fluency_np", "kissing_dancing_images_fac", "kissing_dancing_words_fac", "action_naming_free_fac") for (lang in langs) { a <- t.test(as.formula(paste(lang, '~ factor(syndromic_diagnosis)')), data = fc, na.action = "na.omit") print(lang) print(a) } ```