library(QuantPsyc) x<-read.csv("facehbi_dti_np.csv") Color=c("red","blue") scan("npvars.names", what = character())->np scan("nivars.names", what = character())->ni sink(file = "facehbi_dti_np_models.txt", append = TRUE, type = "output", split = FALSE) for(i in 1:length(np)){ for(j in 1:length(ni)){ y.data <- x[c(ni[j], np[i], "female", "Edad", "Escolaridad", "SUVR", "Risk")] y.data <- y.data[complete.cases(y.data),] a <- lm( paste ('y.data$', np[i], ' ~ y.data$', ni[j], ' + y.data$SUVR +y.data$Risk + y.data$female + y.data$Edad + y.data$Escolaridad + ', 'y.data$', ni[j], '*y.data$Risk')) writeLines(paste("NP: ", np[i], " NI: ", ni[j])) writeLines(paste("R2: ", summary(a)$adj.r.squared, " p-value: ", 1-pf(summary(a)$fstatistic[1], summary(a)$fstatistic[2], summary(a)$fstatistic[3]))) writeLines(paste("p-value (", ni[j],"): ", summary(a)$coef[2,4], " p-value (SUVR): ", summary(a)$coef[3,4])) beta <- lm.beta(a) for(k in 1:length(beta)){ writeLines(paste(names(beta[k]), ": ", beta[k])) } writeLines(paste("-------")) } } sink()